Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Chemosphere ; 305: 135489, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-1906853

ABSTRACT

The formation of secondary aerosol species, including nitrate and sulfate, induces severe haze in the North China Plain. However, despite substantial reductions in anthropogenic pollutants due to severe restriction of residential and industrial activities in 2020 to stop the spread of COVID-19, haze still formed in Zhengzhou. We compared ionic compositions of PM2.5 during the period of the restriction with that immediately before the restriction and in the comparison period in 2019 to investigate the processes that caused the haze. The average concentration of PM2.5 was 83.9 µg m-3 in the restriction period, 241.8 µg m-3 before the restriction, and 94.0 µg m-3 in 2019. Nitrate was the largest contributor to the PM2.5 in all periods, with an average mass fraction of 24%-30%. The average molar concentration of total nitrogen compounds (NOx + nitrate) was 0.89 µmol m-3 in the restriction period, which was much lower than that in the non-restriction periods (1.85-2.74 µmol m-3). In contrast, the concentration of sulfur compounds (SO2 + sulfate) was 0.34-0.39 µmol m-3 in all periods. The conversion rate of NOx to nitrate (NOR) was 0.35 in the restriction period, significantly higher than that before the restriction (0.26) and in 2019 (0.25). NOR was higher with relative humidity in 40-80% in the restriction period than in the other two periods, whereas the conversion rate of SO2 to sulfate did not, indicating nitrate formation was more efficient during the restriction. When O3 occupied more than half of the oxidants (Ox = O3 + NO2), NOR increased rapidly with the ratio of O3 to Ox and was much higher in the daytime than nighttime. Therefore, haze in the restriction period was caused by increased NOx-to-nitrate conversion driven by photochemical reactions.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Aerosols/analysis , Air Pollutants/analysis , Air Pollution/analysis , China , Environmental Monitoring , Humans , Nitrates/analysis , Nitrogen Oxides/analysis , Particulate Matter/analysis , Seasons , Sulfates/analysis
2.
Atmospheric Research ; : 105490, 2021.
Article in English | ScienceDirect | ID: covidwho-1051469

ABSTRACT

The reduced economic and social activities during the Chinese Spring Festival provide a unique experiment to evaluate reductions in anthropogenic NH3 emissions in China. However, quantifying this unique scenario is challenging as meteorology may mask the real changes in observed NH3 concentrations. Here, we applied a machine learning technique to decouple the effects of meteorology and confirmed that the real (deweathered) NH3 concentration dropped to a minimum during the Spring Festival in 2019 and 2020 at both urban (Beijing) and rural (Xianghe) sites on the North China Plain. Compared with the scenario without the Spring Festival effect in 2020, we predicted NH3 concentrations that were 39.8% and 24.6% higher than the observed values at the urban and rural sites, respectively. The significant difference between the two sites indicates a larger reduction in anthropogenic NH3 emissions in urban areas than in rural areas due to the Spring Festival and lockdown measures of COVID-19. Future control strategies should consider the emissions of NH3 from the transportation, industrial and residential sectors, considering that agricultural emissions are minor in cold seasons.

3.
Sci Total Environ ; 744: 140840, 2020 Nov 20.
Article in English | MEDLINE | ID: covidwho-643247

ABSTRACT

To control the spread of the novel coronavirus disease 2019 (COVID-19) in China, many anthropogenic activities were reduced and even closed on the national scale. To study the impact of this reduction and closing down, hourly concentrations of PM2.5-related elements were measured at a rural site before (12-25 January 2020), during (26 January-9 February 2020) and after (22 March-2 April 2020) the control period when all people remained socially isolated in their homes and could not return to economic zones for work. Nine major sources were identified by the positive matrix factorization model, including fireworks burning, coal combustion, vehicle emissions, dust, Cr industry, oil combustion, Se industry, Zn smelter, and iron and steel industry. Before the control period, K, Fe, Ca, Zn, Ba and Cu were the main elements, and fireworks burning, Zn smelter and vehicle emissions provided the highest contributions to the total element mass with 55%, 12.1% and 10.3%, respectively. During the control period, K, Fe, Ba, Cu and Zn were the dominating elements, and fireworks burning and vehicle emissions contributed 55% and 27% of the total element mass. After the control period, Fe, K, Ca, Zn and Ba were the main elements, and dust and iron and steel industry were responsible for 56% and 21% of the total element mass. The increased contribution from vehicle emissions during the control period could be attributed to our sampling site being near a town hospital and the fact that the vehicle activities were not restricted. The source apportionment results were also related to air mass backward trajectories. The largest reductions of dust, coal combustion, and the industrial sources (Cr industry, Zn smelter, Se industry, iron and steel industry) were distinctly seen for northwest transport (Ulanqab) and were least significant for northeast transport (Tangshan and Tianjin).


Subject(s)
Air Pollutants/analysis , Coronavirus Infections , Coronavirus , Pandemics , Pneumonia, Viral , Beijing , Betacoronavirus , COVID-19 , China , Cities , Dust/analysis , Environmental Monitoring , Humans , Particulate Matter/analysis , SARS-CoV-2 , Seasons , Vehicle Emissions/analysis
SELECTION OF CITATIONS
SEARCH DETAIL